ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
Ad J. M. Buuron, Sjaak J. Beulens, Ries J. F. van de Sande, Daniel C. Schram, Jaap G. van der Laan
Fusion Science and Technology | Volume 19 | Number 4 | July 1991 | Pages 2049-2058
Technical Paper | Carbon Material Special | doi.org/10.13182/FST91-A29339
Articles are hosted by Taylor and Francis Online.
An expanding cascaded arc plasma is used for the deposition of different types of carbon layers at high growth rates. Single diamond crystals of 60 µm and 25-µm-thick continuous films are deposited within 1 h on areas of ∼5 cm2. In recent experiments, pyrolytic graphite films have been deposited. Films up to 200 µm thick have been produced within 20 min on an area of ∼12 cm2. The film type and growth rate depend on the choice of the optimum reactor parameter settings. To maximize the growth rate and crystallinity of the film, the reactor settings are varied. High growth rates (maximum of 762 nm/s) have been obtained at high temperatures (600 to 1000°C). Several diagnostic techniques are used to analyze the film. The purity of the films has been confirmed by Auger electron spectroscopy.