ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Shigeo Numata, Yasuhiko Fujii, Makoto Okamoto
Fusion Science and Technology | Volume 19 | Number 1 | January 1991 | Pages 140-145
Technical Paper | Safety/Environmental Aspect | doi.org/10.13182/FST91-A29323
Articles are hosted by Taylor and Francis Online.
Depth profiles of tritiated water in concrete walls measured in a heavy water reactor are analyzed using a diffusion model. The apparent diffusion coefficient of tritiated water in concrete made with a standard mixing proportion is 3.3 × 10−11 m2/s. In addition to the primary diffusion mechanism, there is evidence of a second mechanism, possibly a fast diffusion process. The diffusion model can be applied to tritiated water penetration into concrete when the concrete walls of fusion reactors are exposed to air containing tritiated water vapor. In the heavy water reactor, the average concentration of tritiated water in the air over 20 yr is estimated to be ∼2.0 × 10−2 Bq/cm3. The tritium inventory in concrete is ∼1.0 × 107 Bq/m3 in the region <0.65 m deep. A 0.2-m-thick concrete wall is sufficient to prevent tritium release into the environment from exceeding the regulatory limit.