ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Mamoru Matsuoka, Hiroshi Horiike, Takao Itoh, Mikito Kawai, Mitsuru Kikuchi, Masaaki Kuriyama, Makoto Mizuno, Shigeru Tanaka
Fusion Science and Technology | Volume 19 | Number 1 | January 1991 | Pages 113-130
Technical Paper | Plasma Heating System | doi.org/10.13182/FST91-A29321
Articles are hosted by Taylor and Francis Online.
In the JT-60 neutral beam injectors (NBIs), an active method using a set of coils is adopted to shield unneutralized beams from stray magnetic fields, while the usual passive method using high-mu materials is used to shield the ion sources and neutralizers. This active shielding method is a unique solution for the unneutralized beams in the JT-60 NBI under the constraints of the limited space available and minimizing the error field induced by the shielding. A passive shielding method is permissible for the ion sources and the neutralizers because the space to be shielded is limited. The active shielding system is designed by making a one-fourth model of the magnetic system and calculating ion orbits using magnetic fields measured in the model. The shielding characteristics are checked by arrays of thermocouples buried in the beam dump where the unneutralized beams are thermalized. The thermocouple outputs are consistent with those predicted from the ion orbit calculations.