ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
Mamoru Matsuoka, Hiroshi Horiike, Takao Itoh, Mikito Kawai, Mitsuru Kikuchi, Masaaki Kuriyama, Makoto Mizuno, Shigeru Tanaka
Fusion Science and Technology | Volume 19 | Number 1 | January 1991 | Pages 113-130
Technical Paper | Plasma Heating System | doi.org/10.13182/FST91-A29321
Articles are hosted by Taylor and Francis Online.
In the JT-60 neutral beam injectors (NBIs), an active method using a set of coils is adopted to shield unneutralized beams from stray magnetic fields, while the usual passive method using high-mu materials is used to shield the ion sources and neutralizers. This active shielding method is a unique solution for the unneutralized beams in the JT-60 NBI under the constraints of the limited space available and minimizing the error field induced by the shielding. A passive shielding method is permissible for the ion sources and the neutralizers because the space to be shielded is limited. The active shielding system is designed by making a one-fourth model of the magnetic system and calculating ion orbits using magnetic fields measured in the model. The shielding characteristics are checked by arrays of thermocouples buried in the beam dump where the unneutralized beams are thermalized. The thermocouple outputs are consistent with those predicted from the ion orbit calculations.