ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Michael J. Gouge, Wayne A. Houlberg, Stanley L. Milora
Fusion Science and Technology | Volume 19 | Number 1 | January 1991 | Pages 95-101
Technical Paper | Plasma Engineering | doi.org/10.13182/FST91-A29319
Articles are hosted by Taylor and Francis Online.
Several theories have been developed over the past 15 years to describe the ablation of a solid hydrogenic pellet injected into a hot plasma. The most widely accepted theory is the neutral gas shielding model. This model has been expanded to include ablation by fast ions (as well as electrons), realistic particle distribution functions, self-limiting ablation, and a cold ionized plasma shield beyond the ablating gas. Ablation measurements, including absolute pellet penetration and ablation profiles, from the Impurity Study Experiment, Poloidal Divertor Experiment, Doublet-III, Alcator-C, Tokamak Fontenay-aux-Roses, T-10, Texas Experimental Tokamak, Tokamak Fusion Test Reactor, and Joint European Torus experiments are compared with variations of the neutral gas shielding model under a range of input assumptions.