ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
M. Baldo, R. Pucci, P. F. Bortignon
Fusion Science and Technology | Volume 18 | Number 2 | September 1990 | Pages 347-350
Technical Notes on Cold Fusion | doi.org/10.13182/FST90-A29306
Articles are hosted by Taylor and Francis Online.
The approach to equilibrium of a deuteron gas absorbed into a metal is considered in the framework of a model in which the crystal is described in terms of its elementary excitations. The deuteron-deuteron interaction is dominated by the Plasmon exchange; while the relaxation to equilibrium is mainly due to the coupling with the phonons. The particle-hole contribution is smaller than the plasmon contribution, but not negligible. The time evolution of the deuteron gas, after a first stage dominated by quasi-free scattering, is characterized by the relaxation toward the formation of quasi-deuterium molecules. During this evolution toward equilibrium, fusion reactions can take place at an experimentally detectable rate, while at equilibrium the fusion rate is quite small and comparable with the one for free deuterium molecules.