ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
M. Baldo, R. Pucci, P. F. Bortignon
Fusion Science and Technology | Volume 18 | Number 2 | September 1990 | Pages 347-350
Technical Notes on Cold Fusion | doi.org/10.13182/FST90-A29306
Articles are hosted by Taylor and Francis Online.
The approach to equilibrium of a deuteron gas absorbed into a metal is considered in the framework of a model in which the crystal is described in terms of its elementary excitations. The deuteron-deuteron interaction is dominated by the Plasmon exchange; while the relaxation to equilibrium is mainly due to the coupling with the phonons. The particle-hole contribution is smaller than the plasmon contribution, but not negligible. The time evolution of the deuteron gas, after a first stage dominated by quasi-free scattering, is characterized by the relaxation toward the formation of quasi-deuterium molecules. During this evolution toward equilibrium, fusion reactions can take place at an experimentally detectable rate, while at equilibrium the fusion rate is quite small and comparable with the one for free deuterium molecules.