ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Schulz Electric™ Refurbishes Critical Circulating Water Pump Motor in Only Four Days
Schulz Electric™ was contacted by a nuclear power plant in the New England region that serves a community of over 2 million homes. After five years of service, a 1500 HP, 4 kV, 24-pole circulating water pump motor (measuring approximately 7’ wide, 8’ tall, and weighing several tons) needed refurbishing while the plant was still online. To add to their concern, the power plant is located close to the ocean. The aging motor was not only approaching the end of its serviceable life, but was highly susceptible to moisture intrusion and the salt-laden air, which can build up in air passages within the motor. These environmental conditions can lead to elevated operating temperatures and corrosion developing on the rotor, stator, and shaft components. These factors combined, placed the plant at an increased risk of downtime that could have potentially led to a significant loss of revenue if they were forced into a shutdown event.
Om Prakash Joneja, Vijay R. Nargundkar
Fusion Science and Technology | Volume 18 | Number 2 | September 1990 | Pages 310-316
Technical Paper | Blanket Engineering | doi.org/10.13182/FST90-A29302
Articles are hosted by Taylor and Francis Online.
Monte Carlo calculations are performed for a full-coverage spherical system consisting of a stainless steel first wall and a lead-beryllium neutron multiplier. All the calculations use the MORSE-CG code, employing the Los Alamos National Laboratory 30-group neutron cross-section set CLAW-IV in P3 approximation. For multiplier thicknesses varying from 3 to 22.5 cm, the ratio of neutrons leaking from the system with and without 1.5-cm-thick stainless steel decreases from 1.48 to 1.41 for lead and from 1.78 to 1.58 for beryllium. For a three-region system consisting of a first wall, multiplier, and a homogeneous mixture of water and natural lithium, the tritium breeding ratio for the stainless steel-beryllium-homogeneous (natural lithium + water) system is only ∼9% more than that of the stainless steel-lead-homogeneous (natural lithium + water) system. Recent measurements and calculations on neutron multiplication suggest a downward correction for Be(n,2n) and an upward correction for Pb(n,2n) in the ENDF/B-IV cross-section set. In light of such changes in cross sections, a comparison is made between beryllium and lead as a multiplier with a stainless steel first wall.