ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
Koji Oishi, Yujiro Ikeda, Chikara Konno, Tomoo Nakamura
Fusion Science and Technology | Volume 18 | Number 2 | September 1990 | Pages 291-309
Technical Paper | Shielding | doi.org/10.13182/FST90-A29301
Articles are hosted by Taylor and Francis Online.
The principal components of concrete were irradiated by 14-MeV neutrons for measurement of their induced activities to verify the activation calculation code THIDA-2 and its related cross-section library CROSSLIB. The observed radioactive nuclides, whose half-lives range from minutes to years, were 28Al, 29Al, 27Mg, 44K, 41Ar, 56Mn, 42K, 24Na, 43K, 48Sc, 47Sc, 47Ca, 46Sc, 54Mn, and 22Na, Experimental and calculated results were compared. Good agreement was obtained within ±20%, for 28Al, 56Mn, 42K, 24Na, 48Sc, 47Ca, 46Sc, and 54Mn with well-estimated production cross sections. Large differences were also observed, however, ranging in value from −50 to +100%, for the other nuclides. The cross-section values near 14 MeV for these nuclides were replaced with the cross-section data measured at the Fusion Neutronics Source at the Japan Atomic Energy Research Institute. Recalculation was performed using the newly estimated group cross sections derived from these data, and agreement between experiment and calculation was improved to within ±20%. From this experimental study, it was proved that the uncertainties of the activation cross-section values could satisfactorily explain the discrepancies of the induced activity calculation.