ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Koji Oishi, Yujiro Ikeda, Chikara Konno, Tomoo Nakamura
Fusion Science and Technology | Volume 18 | Number 2 | September 1990 | Pages 291-309
Technical Paper | Shielding | doi.org/10.13182/FST90-A29301
Articles are hosted by Taylor and Francis Online.
The principal components of concrete were irradiated by 14-MeV neutrons for measurement of their induced activities to verify the activation calculation code THIDA-2 and its related cross-section library CROSSLIB. The observed radioactive nuclides, whose half-lives range from minutes to years, were 28Al, 29Al, 27Mg, 44K, 41Ar, 56Mn, 42K, 24Na, 43K, 48Sc, 47Sc, 47Ca, 46Sc, 54Mn, and 22Na, Experimental and calculated results were compared. Good agreement was obtained within ±20%, for 28Al, 56Mn, 42K, 24Na, 48Sc, 47Ca, 46Sc, and 54Mn with well-estimated production cross sections. Large differences were also observed, however, ranging in value from −50 to +100%, for the other nuclides. The cross-section values near 14 MeV for these nuclides were replaced with the cross-section data measured at the Fusion Neutronics Source at the Japan Atomic Energy Research Institute. Recalculation was performed using the newly estimated group cross sections derived from these data, and agreement between experiment and calculation was improved to within ±20%. From this experimental study, it was proved that the uncertainties of the activation cross-section values could satisfactorily explain the discrepancies of the induced activity calculation.