ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
John N. Harb, William G. Pitt, H. Dennis Tolley
Fusion Science and Technology | Volume 18 | Number 4 | December 1990 | Pages 669-677
Technical Notes on Cold Fusion | doi.org/10.13182/FST90-A29261
Articles are hosted by Taylor and Francis Online.
Experiments are conducted to examine neutron emissions associated with electrolysis of 3 M LiOD in heavy water with a palladium electrode. The data show evidence of an increase in the number of neutrons detected during heavy water electrolysis relative to light water background experiments. No anomalous heat, tritium, or helium is detected. A rigorous statistical analysis is used to describe the distribution of both the neutron burst size and burst rate, each of which is characterized by a single parameter. The background neutron emission can be characterized by a burst size of 2 and a burst rate of 0.123 s−1, although some variability is observed. Analysis establishes the statistical significance of increased neutron emission during foreground (heavy water) runs, even when background variability is taken into account. In one case, the neutron emission is characterized by large but infrequent bursts. In the other case, only the burst rate increases to 0.203 s−1. Although the data are limited, the need for careful statistical analysis and the importance of experimental design are shown.