ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
John N. Harb, William G. Pitt, H. Dennis Tolley
Fusion Science and Technology | Volume 18 | Number 4 | December 1990 | Pages 669-677
Technical Notes on Cold Fusion | doi.org/10.13182/FST90-A29261
Articles are hosted by Taylor and Francis Online.
Experiments are conducted to examine neutron emissions associated with electrolysis of 3 M LiOD in heavy water with a palladium electrode. The data show evidence of an increase in the number of neutrons detected during heavy water electrolysis relative to light water background experiments. No anomalous heat, tritium, or helium is detected. A rigorous statistical analysis is used to describe the distribution of both the neutron burst size and burst rate, each of which is characterized by a single parameter. The background neutron emission can be characterized by a burst size of 2 and a burst rate of 0.123 s−1, although some variability is observed. Analysis establishes the statistical significance of increased neutron emission during foreground (heavy water) runs, even when background variability is taken into account. In one case, the neutron emission is characterized by large but infrequent bursts. In the other case, only the burst rate increases to 0.203 s−1. Although the data are limited, the need for careful statistical analysis and the importance of experimental design are shown.