ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
NRC cancels advanced reactor meeting due to government shutdown
The Nuclear Regulatory Commission has announced it is cancelling an upcoming advanced reactor stakeholder meeting, originally scheduled for November 19, due to the government shutdown and the limitations on staffing at the agency.
Tatsuo Izumida, Yoshihiro Ozawa, Kunio Ozawa, Shigeru Izumi, Shunsuke Uchida, Tomohiko Miyamoto, Hisao Yamashita, Hiroshi Miyadera
Fusion Science and Technology | Volume 18 | Number 4 | December 1990 | Pages 641-646
Technical Notes on Cold Fusion | doi.org/10.13182/FST90-A29257
Articles are hosted by Taylor and Francis Online.
Experiments on cold nuclear fusion are performed on titanium deutende (TiD2) crystal warmed from liquid nitrogen temperature to room temperature. Fusion with an estimated thermal energy output much smaller than the expected level (1012 to 1013 fusion/s·g−1) is confirmed by neutron burst emission, but without excess heat production. By analyzing the temperature dependence of the neutron emission in the titanium-deuterium system, it is concluded that so-called cold nuclear fusion may actually be hot-spot fusion caused by a localized high voltage generated, along with fracture formation, in the TiD2 by lattice strain.