ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Tatsuo Izumida, Yoshihiro Ozawa, Kunio Ozawa, Shigeru Izumi, Shunsuke Uchida, Tomohiko Miyamoto, Hisao Yamashita, Hiroshi Miyadera
Fusion Science and Technology | Volume 18 | Number 4 | December 1990 | Pages 641-646
Technical Notes on Cold Fusion | doi.org/10.13182/FST90-A29257
Articles are hosted by Taylor and Francis Online.
Experiments on cold nuclear fusion are performed on titanium deutende (TiD2) crystal warmed from liquid nitrogen temperature to room temperature. Fusion with an estimated thermal energy output much smaller than the expected level (1012 to 1013 fusion/s·g−1) is confirmed by neutron burst emission, but without excess heat production. By analyzing the temperature dependence of the neutron emission in the titanium-deuterium system, it is concluded that so-called cold nuclear fusion may actually be hot-spot fusion caused by a localized high voltage generated, along with fracture formation, in the TiD2 by lattice strain.