ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Scott W. Haney, L. John Perkins, John Mandrekas, Weston M. Stacey, Jr.
Fusion Science and Technology | Volume 18 | Number 4 | December 1990 | Pages 606-617
Alpha Particles in Fusion Research | doi.org/10.13182/FST90-A29253
Articles are hosted by Taylor and Francis Online.
Work involving the selection and burn stability control of near-ignited operating points f or the International Thermonuclear Experimental Reactor (ITER) is described. Using simple volume-averaged zero-dimensional transport models, it is suggested that ITER operation at high densities (1 to 2 × 1020/m3) and low temperatures (6 to 10 keV) may be necessary, or even desirable, even though these plasma parameters are intrinsically thermally unstable. It is argued that these thermal instabilities can be effectively controlled using active feedback based on standard diagnostic signals. In particular, the physical and technological feasibility of three control methods, modulation of neutral beam power, modulation of fueling rate, and controlled injection of impurities, is considered, and recommendations regarding the applicability of these methods to ITER are made.