ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Scott W. Haney, L. John Perkins, John Mandrekas, Weston M. Stacey, Jr.
Fusion Science and Technology | Volume 18 | Number 4 | December 1990 | Pages 606-617
Alpha Particles in Fusion Research | doi.org/10.13182/FST90-A29253
Articles are hosted by Taylor and Francis Online.
Work involving the selection and burn stability control of near-ignited operating points f or the International Thermonuclear Experimental Reactor (ITER) is described. Using simple volume-averaged zero-dimensional transport models, it is suggested that ITER operation at high densities (1 to 2 × 1020/m3) and low temperatures (6 to 10 keV) may be necessary, or even desirable, even though these plasma parameters are intrinsically thermally unstable. It is argued that these thermal instabilities can be effectively controlled using active feedback based on standard diagnostic signals. In particular, the physical and technological feasibility of three control methods, modulation of neutral beam power, modulation of fueling rate, and controlled injection of impurities, is considered, and recommendations regarding the applicability of these methods to ITER are made.