ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Scott W. Haney, L. John Perkins, John Mandrekas, Weston M. Stacey, Jr.
Fusion Science and Technology | Volume 18 | Number 4 | December 1990 | Pages 606-617
Alpha Particles in Fusion Research | doi.org/10.13182/FST90-A29253
Articles are hosted by Taylor and Francis Online.
Work involving the selection and burn stability control of near-ignited operating points f or the International Thermonuclear Experimental Reactor (ITER) is described. Using simple volume-averaged zero-dimensional transport models, it is suggested that ITER operation at high densities (1 to 2 × 1020/m3) and low temperatures (6 to 10 keV) may be necessary, or even desirable, even though these plasma parameters are intrinsically thermally unstable. It is argued that these thermal instabilities can be effectively controlled using active feedback based on standard diagnostic signals. In particular, the physical and technological feasibility of three control methods, modulation of neutral beam power, modulation of fueling rate, and controlled injection of impurities, is considered, and recommendations regarding the applicability of these methods to ITER are made.