ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Schulz Electric™ Refurbishes Critical Circulating Water Pump Motor in Only Four Days
Schulz Electric™ was contacted by a nuclear power plant in the New England region that serves a community of over 2 million homes. After five years of service, a 1500 HP, 4 kV, 24-pole circulating water pump motor (measuring approximately 7’ wide, 8’ tall, and weighing several tons) needed refurbishing while the plant was still online. To add to their concern, the power plant is located close to the ocean. The aging motor was not only approaching the end of its serviceable life, but was highly susceptible to moisture intrusion and the salt-laden air, which can build up in air passages within the motor. These environmental conditions can lead to elevated operating temperatures and corrosion developing on the rotor, stator, and shaft components. These factors combined, placed the plant at an increased risk of downtime that could have potentially led to a significant loss of revenue if they were forced into a shutdown event.
Yoshiaki Arata, Yue-Chang Zhang
Fusion Science and Technology | Volume 18 | Number 1 | August 1990 | Pages 95-102
Technical Note | Cold Fusion | doi.org/10.13182/FST90-A29234
Articles are hosted by Taylor and Francis Online.
Intense neutron generation at a rate of > 108 n/s in cold fusion was achieved when neutron emission “avalanches” were observed as deuterium forcefully penetrated into a large 2-cm-diam × 5-cm-long palladium cathode. A very specific process involving intense charging and discharging of deuterium from the palladium cathode during continuous electrolysis of heavy water, called the “on-off effect,” was discovered. This effect is 10 to 100 times stronger than the ordinary on-off effect of the current. As the palladium absorbed and exhausted the deuterium, the thermal behavior of the palladium was examined in detail. It is concluded that the particular characteristics of palladium and the generation of a huge inner pressure within the palladium are necessary conditions for a cold fusion reaction. Other researchers have used a much smaller palladium cathode than the one used here. They measured only the electrolysis temperature, and not the cathode temperature. Thus, their experiments failed to discover the thermal characteristics of the palladium cathode, the on-off effect, and intense cold fusion. This experiment proves that an unknown nuclear fusion process that generates a large amount of heat, as proposed by others, does not exist. Instead, the heat is actually reaction heat generated by the explosive absorption and exhaustion of the deuterium in the palladium cathode, caused by the on-off effect.