ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Yoshiaki Arata, Yue-Chang Zhang
Fusion Science and Technology | Volume 18 | Number 1 | August 1990 | Pages 95-102
Technical Note | Cold Fusion | doi.org/10.13182/FST90-A29234
Articles are hosted by Taylor and Francis Online.
Intense neutron generation at a rate of > 108 n/s in cold fusion was achieved when neutron emission “avalanches” were observed as deuterium forcefully penetrated into a large 2-cm-diam × 5-cm-long palladium cathode. A very specific process involving intense charging and discharging of deuterium from the palladium cathode during continuous electrolysis of heavy water, called the “on-off effect,” was discovered. This effect is 10 to 100 times stronger than the ordinary on-off effect of the current. As the palladium absorbed and exhausted the deuterium, the thermal behavior of the palladium was examined in detail. It is concluded that the particular characteristics of palladium and the generation of a huge inner pressure within the palladium are necessary conditions for a cold fusion reaction. Other researchers have used a much smaller palladium cathode than the one used here. They measured only the electrolysis temperature, and not the cathode temperature. Thus, their experiments failed to discover the thermal characteristics of the palladium cathode, the on-off effect, and intense cold fusion. This experiment proves that an unknown nuclear fusion process that generates a large amount of heat, as proposed by others, does not exist. Instead, the heat is actually reaction heat generated by the explosive absorption and exhaustion of the deuterium in the palladium cathode, caused by the on-off effect.