ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
William P. Kelleher, J. Wiley Davidson, Gary R. Thayer, Donald J. Dudziak
Fusion Science and Technology | Volume 17 | Number 3 | May 1990 | Pages 466-475
Technical Note | Shielding | doi.org/10.13182/FST90-A29221
Articles are hosted by Taylor and Francis Online.
A radiation shielding analysis was performed on the Confinement Physics Research Facility (CPRF) under construction at Los Alamos National Laboratory. A reversed-field pinch device, the ZTH, was examined in an effort to obtain an estimate of the spatial distribution of the dose seen by both personnel and electronic components. In the Monte Carlo transport analysis, the MCNP code was used to estimate the neutron and gamma-ray doses and differential flux (in energy) spectra at ten locations within the CPRF. The complex geometry of the ZTH dictated that the problem be solved in a two-step process: First, a cylindrical surface source enclosing the ZTH was computed, and then this source was used as the radiation source for the CPRF building calculations. Using a source strength of 1015 neutrons, identical calculations were performed for both deuterium-deuterium and deuterium-tritium fusion plasmas.