ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Simon C. P. Wang, Delbert E. Day
Fusion Science and Technology | Volume 17 | Number 3 | May 1990 | Pages 427-438
Technical Paper | ICF Target | doi.org/10.13182/FST90-A29218
Articles are hosted by Taylor and Francis Online.
A technique is described for producing spherical gas bubbles in glass that can be used to make inertial confinement fusion (ICF) targets. A glass rod containing an irregularly shaped hole is heated to a temperature where the glass viscosity is low enough so that surface tension forms a bubble from the hole. Buoyancy forces drive the bubble upward in the glass rod as it becomes increasingly spherical. At the proper time, the rising bubble is decelerated and brought to a gradual stop by increasing the glass viscosity by slowly reducing the temperature. With the present technique, 3- to 6-mm-diam spherical bubbles with a distortion of 0.3% have been produced in Corning 7740 and Schott BK-7 glasses. Glass macroshells can be formed from the bubbles trapped in the glass by grinding the outside surface concentric with the highly spherical inner surface. These glass shells, which possess a high degree of geometrical perfection, should be adequate for ICF targets.