ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Michael D. Baehre, Don Steiner
Fusion Science and Technology | Volume 17 | Number 3 | May 1990 | Pages 412-426
Technical Paper | Plasma Engineering | doi.org/10.13182/FST90-A29217
Articles are hosted by Taylor and Francis Online.
A simple, yet comprehensive, model of the divertor region is presented. The model is based on the two-point approach described by Galambos and Peng but has been enhanced to include the key processes of remote radiative cooling, neutral recycling, particle convection, ash effects, and the effects of divertor geometry and plate material. Neutral particle effects are represented using a wedge-shaped section of plasma overlying the divertor plate and a slab attenuation model. The results of benchmarking against four other divertor models demonstrate the applicability of the proposed model. System sensitivities to key parameters are discussed and several general observations regarding divertor design are presented.