ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Harold N. Barr, Fred Hittman, Robert D. Brown, Frank W. Clinard, Jr., Manuel R. Lopez, Horace Martinez, Tobias J. Romero, Jay H. Cook
Fusion Science and Technology | Volume 17 | Number 3 | May 1990 | Pages 385-390
Technical Paper | Materials Engineering | doi.org/10.13182/FST90-A29215
Articles are hosted by Taylor and Francis Online.
Ceramic-to-metal seals were prepared by sputtering a titanium metallizing layer onto ceramic disks and then brazing to metal tubes. The ceramics used were alumina, MACOR, spinel, A ION, and a mixture of Al2O3 and Si3N4, Except for the MACOR, which was brazed to a titanium tube, the ceramics were brazed to niobium tubes. The seals were leak tested and then sent to Los Alamos National Laboratory, where they were irradiated using the spallation neutron source at the Los Alamos Meson Physics Facility. Following irradiation for ∼90 days to a fluence of 3.8 × 1023 n/m2, the samples were moved to hot cells and again leak tested. Only the MACOR samples showed any measurable leaks. One set of samples was then pressurized to 6.9 MPa (1000 psi) and subsequently leak tested. No leaks were found. Bursting the seals required hydrostatic pressures of at least 34 MPa (5000 psi). The high seal strength and few leaks indicate that ceramic-to-metal seals can resist radiation-induced degradation.