ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Francesco Celani, Antonio Spallone, Sandro Pace, Basilio Polichetti, Aniello Saggese, Lorella Liberatori, Vittorio di Stefano, Paolo Marini
Fusion Science and Technology | Volume 17 | Number 4 | July 1990 | Pages 718-724
Technical Notes on Cold Fusion | doi.org/10.13182/FST90-A29208
Articles are hosted by Taylor and Francis Online.
Several experiments were performed at the Gran Sasso Laboratory on an 0.8-cm-diam × 5-cm-long, hyperpure, high-temperature vacuum-annealed palladium rod used as a cathode for electrolytic infusion of D2O and 0.1 M LiOH with regular additions of gaseous CO2 at a current density of 60 mA/cm2. In the very low background radiation environment, several gamma bursts lasting up to 15 min were detected whose intensity, in terms of cold fusion, was > 10−20 fusion/(deuteron pair · s). Under normal background conditions, none of these burst signals would have been detected with statistical significance. The shape and intensity of these signals are quite similar to those detected previously.