ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Yasushi Yamamoto, Kiyoshi Yoshikawa, Hisayuki Toku, Tsuneyuki Haga
Fusion Science and Technology | Volume 17 | Number 4 | July 1990 | Pages 540-554
Technical Paper | Beam Direct Conversion | doi.org/10.13182/FST90-A29190
Articles are hosted by Taylor and Francis Online.
Experiments and simulations were performed for helium ion beams to confirm the general validity of the two-dimensional beam direct energy conversion simulation code KUAD (Kyoto University Advanced Dart) for a wide range of beam parameters and to better understand how the performance of beam direct energy recovery is dependent on beam parameters. The experiments compared currents in the 60- to 140-mA range for 15-keV beam energy and from 130 to 250 mA for 20-keV beam energy. Beam behaviors numerically predicted for different currents and collector potentials were verified. Numerically obtained performance characteristics of the beam direct energy recovery generally show excellent agreement with experimental results within experimental errors. The only discrepancy occurs in the vicinity of the collector potential corresponding to the maximum energy recovery due to possible deviation from the axisymmetry of electrodes and to their small misalignment with respect to the beam axis. Beam perveance rather than beam energy or current is a good parameter for the evaluation of the performance of beam direct energy recovery. Maximum energy recovery efficiencies of 87 ± 4% for 15-keV and 85 ± 4% for 20-keV beams have been achieved.