ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Craig Beidler, Günter Grieger, Franz Herrnegger, Ewald Harmeyer, Johann Kisslinger, Wolf Lotz, Henning Maassberg, Peter Merkel, Jürgen Nührenberg, Fritz Rau, Jörg Sapper, Francesco Sardei, Ruben Scardovelli, Arnulf Schlüter, Horst Wobig
Fusion Science and Technology | Volume 17 | Number 1 | January 1990 | Pages 148-168
Technical Paper | Stellarator System | doi.org/10.13182/FST90-A29178
Articles are hosted by Taylor and Francis Online.
The future experiment Wendelstein VII-X (W VII-X) is being developed at the Max-Planck-Institut für Plasmaphysik. A Helical Advanced Stellarator (Helias) configuration has been chosen because of its confinement and stability properties. The goals of W VII-X are to continue the development of the modular stellarator, to demonstrate the reactor capability of this stellarator line, and to achieve quasi-steady-state operation in a temperature regime >5 keV. This temperature regime can be reached in W VII-X if neoclassical transport plus the anomalous transport found in W VII-A prevail. A heating power of 20 MW will be applied to reach the reactor-relevant parameter regime. The magnetic field in W VII-X has five field periods. Other basic data are as follows: major radius R0 = 6.5 m, magnetic induction B0 = 3 T, stored magnetic energy W ≈ 0.88 GJ, and average plasma radius a = 0.65 m. Superconducting coils are favored because of their steady-state field, but pulsed water-cooled copper coils are also being investigated. Unlike planar circular magnetic field coils, which experience only a radially directed force, twisted coils are subject to a lateral force component as well. Studies of various superconducting coil systems for Helias configurations have shown that the magnitudes of these radial and lateral force components are comparable. Based on a support model, the mechanical stresses are calculated; all components of the stress tensor are of equal importance. Other studies being conducted are concerned with the many complex engineering aspects presented by the construction of nonplanar superconducting coils.