ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
T. J. Dolan*
Fusion Science and Technology | Volume 16 | Number 2 | September 1989 | Pages 149-156
Technical Paper | Plasma Engineering | doi.org/10.13182/FST89-A29144
Articles are hosted by Taylor and Francis Online.
The one-dimensional equilibrium code BPROF is used to calculate the plasma inductance as a function of beta and pinch parameter θ, and the results are represented by an algorithm. The attainable poloidal flux is calculated for a variety of cases, using the CCOIL code, to derive simple algorithms representing the ohmic heating (OH) and equilibrium field (EF) fluxes in terms of dimensionless parameters. Assuming a temperature scaling relationship with plasma current and size, the loop voltage equation is integrated to find the flux consumed versus the pulse length. This plasma equation is combined with the flux and inductance algorithms to estimate the attainable plasma pulse length, in terms of the peak magnetic field at the coil and the plasma and coil dimensions. The attainable pulse length depends mainly on the major radius. With R = 4 m, a/R = 0.12, and I = 10 MA, a pulse length of ∼15 s is predicted. The voltage drop due to helicity edge loss is a major uncertainty. The main value of this work is the derivation of simple equations for calculating plasma inductance, OH and EF coil fluxes, and plasma pulse length, without having to run BPROF, CCOIL, and plasma transport codes.