ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Robert B. Campbell, L. John Perkins
Fusion Science and Technology | Volume 16 | Number 3 | November 1989 | Pages 383-387
Special Section Content | Cold Fusion Technical Notes | doi.org/10.13182/FST89-A29130
Articles are hosted by Taylor and Francis Online.
In response to the startling announcement of fusion reactions occurring at room temperature by Fleischmann and Pons (F-P), the possible role of high-current densities in producing neutrons and excess heat in deuterated titanium maintained near ambient temperatures and pressures is examined. The apparatus used consists of a balanced resistive circuit containing a deuterated “active” element and a hydrogenated “control” element. The use of a simple electrical circuit (no electrolysis) with elements made of chemically stable TiDx, X = 0.9, removes the complications involved in distinguishing between heat released by chemical versus nuclear processes in an electrolytic cell. This apparatus tests the possibility that the role of high-current density in the F-P experiments is to create such nonequilibrium states as strong pinching due to current microchanneling in the metallic lattice. This strong pinching, in turn, could reduce the deuteron-deuteron separation sufficiently to cause significant fusion. To detect neutrons, an NE-213 liquid organic scintillator spectrometer is used, with gamma counts eliminated by means of pulse-shape discrimination. Samples are subjected to current densities of ∼50 A /cm2 for time periods of 19 h. This current density is a factor of 100 greater than the largest value reported by Fleischmann and Pons. No significant neutron levels are detected above background. The temperature rise of the two samples during the application of the current can be explained by joule heating alone, with no other heat sources present. Based on these experiments, no excess heat is observed within the accuracy of the apparatus, which is estimated to be 10%. It is concluded that the large quantity of excess heat reported by Fleischmann and Pons is due to the presence of factors other than the current density.