ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Hiroshi Nakashima, Shun-Ichi Tanaka, Tomoo Suzuki
Fusion Science and Technology | Volume 16 | Number 3 | November 1989 | Pages 365-376
Technical Paper | Shielding | doi.org/10.13182/FST89-A29127
Articles are hosted by Taylor and Francis Online.
An experiment was carried out to study the behavior of 14-MeV neutrons incident to a large cavity composed of mortar coated with stainless steel, which simulates a neutral beam injector (NBI) in a tokamak fusion reactor. Fast neutron spectra and reaction rate distributions were measured inside the cavity with a 5.06-cm-high × 5.06-cm-diam NE-213 spectrometer as well as 232Th and 235U fission counters. The experimental results were analyzed with a Monte Carlo MCNP-3 code, using nuclear data files from the JENDL series and from ENDF/B-IV. Calculations with two discrete ordinates codes, DOT3.5 and BERMUDA-2DN, using ENDF/B-IV and JENDL nuclear data files, were also compared with the measurements to study their applicability for NBI design. For fast neutrons, the MCNP calculations are in good agreement with the measurements. Moreover, comparison between the DOT3.5 and BERMUDA-2DN calculations showed the significant effect of the Legendre expansion of neutron scattering in the high-energy region. For low-energy neutrons, the DOT3.5 code calculations agreed with the measurements, while the MCNP code could not successfully reproduce the measurements. The experiments also suggested that the ratios of thermal and epithermal neutrons were constant for the 14-MeV neutrons coming into the cavity.