ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Terry Kammash, David L. Galbraith
Fusion Science and Technology | Volume 16 | Number 4 | December 1989 | Pages 469-473
Technical Paper | Special Section: Cold Fusion Technical Notes / Tritium System | doi.org/10.13182/FST89-A29109
Articles are hosted by Taylor and Francis Online.
Two schemes have been proposed to replace the aging tritium production facilities at Savannah River, South Carolina. The reactors at that site have been operating for well over a quarter of a century, producing tritium for national defense programs. But serious questions regarding safety and other issues have arisen. The U.S. Department of Energy and the federal government have reiterated their plan to build a heavy water reactor and a high-temperature gas-cooled reactor at a cost of about $7 billion as replacements for the Savannah River facility. A group of scientists from national laboratories, on the other hand, have proposed the use of a linear accelerator to accelerate protons to produce neutrons to be used to produce tritium in lithium targets. They contend that the capital cost of this accelerator tritium producer is competitive with that of the reactors, but the operating cost may be high unless it is located in a region where the cost of hydropower is low. Yet another scheme is proposed that is safe and potentially less expensive than the other two. It relies on existing or rapidly developing laser technology to drive a magnetically insulated inertial confinement fusion device, which has already produced copious amounts of neutrons that could readily be used in producing tritium.