The Z-Pinch Power Plant (ZP-3) is the first concept to use the results at Sandia National Laboratories' Z accelerator in a power plant application. Assuming high-yield fusion pulses (of 1 to 20 GJ per shot at a rate of 0.1 Hz), we consider a unique shock and energy absorbing system to contain the energy. One concept answers the need for system standoff from the fusion reaction with a replaceable mechanical cartridge manufactured on-site. System studies suggest integrated blanket designs for absorbing the fusion energy, cartridge manufacture of recycled materials, and cartridge installation/replacement to maintain a reasonable duty cycle. An effective system design for ZP-3 requires an integrated blanket to shield the permanent structures from the high-energy neutron flux and strong shock wave, breed tritium, and simultaneously absorb the released fusion energy. We investigate the feasibility of this integrated blanket concept and explore the principles of a containment chamber - a crucible - and the containment mechanisms. An operational cycle is proposed to physically load hardware in 10-s intervals while maintaining operational conditions. Preliminary pressure and shock calculations demonstrate that high-yield inertial fusion energy pulses can be contained if the appropriate energy-absorbing materials are used.