ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Tomoyuki Johzaki, Kunioki Mima, Yasuyuki Nakao, Tomohiro Yokota, Hiroyuki Sumita
Fusion Science and Technology | Volume 43 | Number 3 | May 2003 | Pages 428-436
Technical Paper | Fast Ignition Targets and Z-Pinch Concepts | doi.org/10.13182/FST03-A288
Articles are hosted by Taylor and Francis Online.
To investigate core plasma heating in fast ignition, a relativistic Fokker-Planck code for fast electrons is developed in a one-dimensional planar coordinates system. It is found that in dense plasmas, the Joule heating is much smaller than the heating through Coulomb interactions. In the latter energy deposition process, the long-range collective effect is comparable to that of binary electron-electron collisions. Moreover, on the basis of coupled transport-hydrodynamic simulations in one-dimensional planar geometry, the core heating process for an ignition-experiment-grade compressed core (R = 0.3 g/cm2) is examined, and a possibility of evaluation of burn history from the neutron spectrum is shown. It is shown that a relatively low energy component (E0 1 MeV) of electron beams plays an important role for effective core heating in fast ignition.