ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Tomoyuki Johzaki, Kunioki Mima, Yasuyuki Nakao, Tomohiro Yokota, Hiroyuki Sumita
Fusion Science and Technology | Volume 43 | Number 3 | May 2003 | Pages 428-436
Technical Paper | Fast Ignition Targets and Z-Pinch Concepts | doi.org/10.13182/FST03-A288
Articles are hosted by Taylor and Francis Online.
To investigate core plasma heating in fast ignition, a relativistic Fokker-Planck code for fast electrons is developed in a one-dimensional planar coordinates system. It is found that in dense plasmas, the Joule heating is much smaller than the heating through Coulomb interactions. In the latter energy deposition process, the long-range collective effect is comparable to that of binary electron-electron collisions. Moreover, on the basis of coupled transport-hydrodynamic simulations in one-dimensional planar geometry, the core heating process for an ignition-experiment-grade compressed core (R = 0.3 g/cm2) is examined, and a possibility of evaluation of burn history from the neutron spectrum is shown. It is shown that a relatively low energy component (E0 1 MeV) of electron beams plays an important role for effective core heating in fast ignition.