ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Tomoyuki Johzaki, Kunioki Mima, Yasuyuki Nakao, Tomohiro Yokota, Hiroyuki Sumita
Fusion Science and Technology | Volume 43 | Number 3 | May 2003 | Pages 428-436
Technical Paper | Fast Ignition Targets and Z-Pinch Concepts | doi.org/10.13182/FST03-A288
Articles are hosted by Taylor and Francis Online.
To investigate core plasma heating in fast ignition, a relativistic Fokker-Planck code for fast electrons is developed in a one-dimensional planar coordinates system. It is found that in dense plasmas, the Joule heating is much smaller than the heating through Coulomb interactions. In the latter energy deposition process, the long-range collective effect is comparable to that of binary electron-electron collisions. Moreover, on the basis of coupled transport-hydrodynamic simulations in one-dimensional planar geometry, the core heating process for an ignition-experiment-grade compressed core (R = 0.3 g/cm2) is examined, and a possibility of evaluation of burn history from the neutron spectrum is shown. It is shown that a relatively low energy component (E0 1 MeV) of electron beams plays an important role for effective core heating in fast ignition.