ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE fast tracks test reactor projects: What to know
The Department of Energy today named 10 companies that want to get a test reactor critical within the next year using the DOE’s offer to authorize test reactors outside of national laboratories. As first outlined in one of the four executive orders on nuclear energy released by President Trump on May 23 and in the request for applications for the Reactor Pilot Program released June 18, the companies must use their own money and sites—and DOE authorization—to get reactors operating. What they won’t need is a Nuclear Regulatory Commission license.
William M. Sharp, Debra A. Callahan, Max Tabak, Simon S. Yu, Per F. Peterson, Dale R. Welch, David V. Rose, Craig L. Olson
Fusion Science and Technology | Volume 43 | Number 3 | May 2003 | Pages 393-400
Technical Paper | Chambers and Chamber Wall Protection Methods | doi.org/10.13182/FST03-A283
Articles are hosted by Taylor and Francis Online.
In a typical thick-liquid-wall scenario for heavy-ion fusion (HIF), between 70 and 200 high-current beams approach the target chamber in entry pipes and propagate ~3 m to the target. Since molten-salt jets are planned to protect the chamber wall, the beams move through vapor from the jets, and collisions between beam ions and this background gas both strip the ions and ionize the gas molecules. Radiation from the preheated target causes further beam stripping and gas ionization. Because of this stripping, beams for HIF are expected to require substantial neutralization in a target chamber. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by the target radiation, and preneutralization by a plasma generated along the beam path. When these effects are included in simulations with practicable beam and chamber parameters, the resulting focal spot is approximately the size required by a distributed radiator target.