ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Ryusuke Tsuji
Fusion Science and Technology | Volume 43 | Number 3 | May 2003 | Pages 327-333
Technical Paper | Targets and Target Protection During Injection | doi.org/10.13182/FST03-A274
Articles are hosted by Taylor and Francis Online.
The flow of residual metal vapor in an inertial fusion energy (IFE) reactor chamber causes (a) forced convection heat transport to the target, (b) drag force to the target, and (c) deviation of the orbit of the target. To solve these difficulties, a flying metal pipe concept for target transport in an IFE reactor is proposed.The metal pipe is composed of material identical to the liquid metal used in the IFE reactor. The metal pipe (typically 0.5-cm radius and 2-m length) is injected from the top of the IFE reactor chamber. Subsequently, the IFE target is injected, and it goes into the metal pipe, goes out from the other side of the pipe, and arrives at the center of the IFE reactor chamber to be shot by energy beams. The target in the pipe is protected against radiation, forced convection heat from residual gas, and the wind in the IFE reactor chamber. In the case that the flying metal pipe is used in the reactor, heat transport to the target and deviation of the orbit of the target decrease. After microexplosion of the IFE target, the metal pipe arrives at the bottom of the reactor chamber and melts in the liquid-metal pool.