ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Warren P. Steckle, Jr., Arthur Nobile, Jr.
Fusion Science and Technology | Volume 43 | Number 3 | May 2003 | Pages 301-306
Technical Paper | Targets and Target Protection During Injection | doi.org/10.13182/FST43-301
Articles are hosted by Taylor and Francis Online.
Low-density polymer foams have been an integral part of targets used in inertial confinement fusion (ICF) experiments. Target designs are unique in the ICF program, and targets are made on an individual basis. Costs for these targets are high due to the time required to machine, assemble, and characterize each target. To produce targets in high volume and at low cost, a polymer system is required that is amenable to scale up. High internal phase emulsion (HIPE) polystyrene is a robust system that offers great flexibility in terms of tailoring the density and incorporating metal dopants. Emulsions used to fabricate HIPE foams currently are made in a batch process. With the use of metering pumps for both the water and oil phases, emulsions can be produced in a continuous process. This not only makes these foams potential candidates for direct-drive capsules, but high-Z dopants can be metered in making these foams attractive for hohlraum components in indirect-drive systems. Preparation of HIPE foams are discussed for both direct-drive and indirect-drive systems.