ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
Thomas J. Asaki, James K. Hoffer, John D. Sheliak
Fusion Science and Technology | Volume 33 | Number 2 | March 1998 | Pages 171-181
Technical Paper | doi.org/10.13182/FST98-A27
Articles are hosted by Taylor and Francis Online.
Inertial confinement fusion (ICF) targets designed to achieve ignition must meet strict surface smoothness and sphericity requirements. One potentially valuable method for evaluating the quality of these targets is resonant ultrasound spectroscopy (RUS). When applied to simple geometries, such as layered spheres or rectangular parallelepipeds, RUS may yield significant information about alloy homogeneity, elastic constants, cavity geometry, the presence of gross defects such as cracking or hemishell bonding problems, and properties of interior fluids. The strengths of RUS techniques for ICF target characterization include applicability at all temperatures of interest with a single apparatus, high sensitivity in frequency spectral measurements, and the inherent acoustic indifference to optically opaque samples. Possible applications and the limitations of RUS methods for examining layer geometry and material properties are addressed. Preliminary room temperature experiments with a deuterium-filled aluminum shell are used to evaluate the utility of many of the described applications. The frequency spectrum compares favorably with theory and displays measurable mode splitting, acoustic-mode resonance widths indicative of cavity boundary dissipative mechanisms, and low-Q elastic modes. The acoustic cavity resonance structure confirms the internal gas density and is used to calculate the two lowest even-order cavity boundary perturbation amplitudes.