ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Thomas J. Asaki, James K. Hoffer, John D. Sheliak
Fusion Science and Technology | Volume 33 | Number 2 | March 1998 | Pages 171-181
Technical Paper | doi.org/10.13182/FST98-A27
Articles are hosted by Taylor and Francis Online.
Inertial confinement fusion (ICF) targets designed to achieve ignition must meet strict surface smoothness and sphericity requirements. One potentially valuable method for evaluating the quality of these targets is resonant ultrasound spectroscopy (RUS). When applied to simple geometries, such as layered spheres or rectangular parallelepipeds, RUS may yield significant information about alloy homogeneity, elastic constants, cavity geometry, the presence of gross defects such as cracking or hemishell bonding problems, and properties of interior fluids. The strengths of RUS techniques for ICF target characterization include applicability at all temperatures of interest with a single apparatus, high sensitivity in frequency spectral measurements, and the inherent acoustic indifference to optically opaque samples. Possible applications and the limitations of RUS methods for examining layer geometry and material properties are addressed. Preliminary room temperature experiments with a deuterium-filled aluminum shell are used to evaluate the utility of many of the described applications. The frequency spectrum compares favorably with theory and displays measurable mode splitting, acoustic-mode resonance widths indicative of cavity boundary dissipative mechanisms, and low-Q elastic modes. The acoustic cavity resonance structure confirms the internal gas density and is used to calculate the two lowest even-order cavity boundary perturbation amplitudes.