ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
W. Brian Clarke, Stanley J. Bos, Brian M. Oliver
Fusion Science and Technology | Volume 43 | Number 2 | March 2003 | Pages 250-255
Technical Note | doi.org/10.13182/FST03-A264
Articles are hosted by Taylor and Francis Online.
Measurements of He, 3He/4He, Ne and 13 other components (H2, HD, D2, CH4, H2O, HDO, D2O, N2, CO, C2H6, O2, Ar, and CO2) in four samples of gas from SRI International (SRI) are reported. Three samples were collected from SRI Case-type stainless steel cells containing ~10 g of Pd/C catalyst initially loaded with ~3 atm D2 at ~200°C, and the fourth sample (not identified) was stated to be a control. Case and the SRI researchers have claimed to observe 4He in concentrations of ~100 parts per million (ppm) and up to 11 ppm, respectively, produced in these cells via the fusion reaction D + D = 4He + 23.8 MeV. Others found no evidence for 4He addition that cannot be readily explained by leaks from the atmosphere into the SRI cells. One sample appears to be identical in composition to air, and the other three have been seriously affected by leak(s) into and from the SRI cells. The rare gas "forensic" evidence includes 3He/4He ratios and He and Ne concentrations that are almost identical to air values. The samples also show high N2 (a primary indicator of air), low O2, and high CO and CO2 due to reaction of incoming atmospheric O2 with C in the catalyst. In two samples, the original D2 (or H2) has almost completely disappeared by outflow through the leak(s). These results have obvious implications concerning the validity of the excess 4He concentrations claimed by Case and the SRI researchers.