ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Stefano Bernabei, Joel C. Hosea, Chun Chieh Kung, George D. Loesser, Joseph Rushinski, James R. Wilson, Ronald R. Parker, Miklos Porkolab
Fusion Science and Technology | Volume 43 | Number 2 | March 2003 | Pages 145-152
Technical Paper | doi.org/10.13182/FST03-A255
Articles are hosted by Taylor and Francis Online.
Princeton Plasma Physics Laboratory and the Massachusetts Institute of Technology are preparing an experiment of current profile control using lower hybrid waves to produce and sustain advanced tokamak regimes in steady-state conditions in Alcator C-Mod. Unlike the Joint European Torus, ToreSupra, and JT60 couplers, the C-Mod lower hybrid coupler does not employ the now conventional multijunction design but will have similar characteristics, compactness, and internal power division while retaining full control of the antenna element phasing. This is achieved by using 3-dB vertical power splitters and a stack of laminated plates with the waveguides milled in them. Construction is simplified and allows easy control and maintenance of all parts. Many precautions are taken to avoid arcing. Special care is also taken to avoid the recycling of reflected power, which could affect the coupling and the launched n