ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
John F. Schivell, Charles E. Bush, D. K. Mansfield, Sidney S. Medley, Hyeon K. Park, F. J. Stauffer
Fusion Science and Technology | Volume 15 | Number 4 | July 1989 | Pages 1520-1540
Technical Paper | Experimental Device | doi.org/10.13182/FST89-A25342
Articles are hosted by Taylor and Francis Online.
Although the total radiated power in the Tokamak Fusion Test Reactor is often as high as 70% of the heating power, most of the radiation is concentrated near the surface of the plasma, and the interior loss is almost negligible. Fractional radiation loss declines during neutral beam heating. Under most interesting plasma conditions, the radiation profiles are dominated by asymmetrical peaks, which indicate locally intense edge radiation. As the high-density limit is approached, under most conditions, a bright band of radiation (a “marfe”) appears on the inner side of the plasma column. Marfe location is affected by toroidal field direction, neutral beam direction, and nearness to the high-density limit. Marfes have been observed to drift under the plasma column to the lower outside plasma edge. Marfes naturally develop into detached plasmas. In enhanced confinement discharges (“super-shots”), an unexplained peculiar bright band, distinct from a marfe, appears in the lower outside part of the vacuum vessel, outside of the limiter radius. In high-density pellet-fueled discharges, there is a central peak that shows evidence for inward impurity convection.