ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Lambertus de Kock
Fusion Science and Technology | Volume 15 | Number 1 | January 1989 | Pages 89-101
Technical Paper | doi.org/10.13182/FST89-A25331
Articles are hosted by Taylor and Francis Online.
The Joint European Torus (JET) was initially built with metallic walls (Nicrofer 7612LC) and four graphite limiters. Gradually more and more graphite protection was added, and it now covers 50% of the wall. The inboard wall was covered with graphite tiles early in JET's operation to protect the wall from damage, and two toroidal belt limiters have been added to increase JET's power-handling capacity. Carbonization has been used as an additional tool to achieve certain benefits and has been developed at the Tokamak Experiment for Technically Oriented Research (TEXTOR) as a method to simulate, for a short time, an all-carbon machine and as a means to control density and impurity production. The benefits of the extensive use of graphite for protection and limiters and of the deliberate application of thin carbon layers are reviewed. Attention is given to the changes in the material under plasma exposure and the damage due to the plasma contact and the machine operation under those conditions. The role of the parameters of the scrape-off layer in the explanation and prediction of the plasma/wall interaction is emphasized.