ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Russia withdraws from 25-year-old weapons-grade plutonium agreement
Russia’s lower house of Parliament, the State Duma, approved a measure to withdraw from a 25-year-old agreement with the United States to cut back on the leftover plutonium from Cold War–era nuclear weapons.
Lambertus de Kock
Fusion Science and Technology | Volume 15 | Number 1 | January 1989 | Pages 89-101
Technical Paper | doi.org/10.13182/FST89-A25331
Articles are hosted by Taylor and Francis Online.
The Joint European Torus (JET) was initially built with metallic walls (Nicrofer 7612LC) and four graphite limiters. Gradually more and more graphite protection was added, and it now covers 50% of the wall. The inboard wall was covered with graphite tiles early in JET's operation to protect the wall from damage, and two toroidal belt limiters have been added to increase JET's power-handling capacity. Carbonization has been used as an additional tool to achieve certain benefits and has been developed at the Tokamak Experiment for Technically Oriented Research (TEXTOR) as a method to simulate, for a short time, an all-carbon machine and as a means to control density and impurity production. The benefits of the extensive use of graphite for protection and limiters and of the deliberate application of thin carbon layers are reviewed. Attention is given to the changes in the material under plasma exposure and the damage due to the plasma contact and the machine operation under those conditions. The role of the parameters of the scrape-off layer in the explanation and prediction of the plasma/wall interaction is emphasized.