ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Zaporizhzhia ‘extremely fragile’ relying on single off-site power line, IAEA warns
Europe’s largest nuclear power plant has just one remaining power line for essential nuclear safety and security functions, compared with its original 10 functional lines before the military conflict with Russia, warned Rafael Mariano Grossi, director general of the International Atomic Energy Agency.
Arthur W. Dalton
Fusion Science and Technology | Volume 15 | Number 1 | January 1989 | Pages 49-54
Technical Paper | Blanket Engineering | doi.org/10.13182/FST89-A25323
Articles are hosted by Taylor and Francis Online.
The tritium production rate (TPR) distribution in a fusion blanket assembly previously determined from measurements of tritium beta activity was remeasured using an independent electronic method. The results agreed within the experimental errors and confirmed the previously reported discrepancies with predictions based on three-dimensional Monte Carlo calculations and multigroup cross sections. The experimental agreement reduced the possibility that results based on the conventional chemical separation of the tritium produced could be subject to a common systematic error and confirmed the validity of the electronic method for TPR measurement. Detailed analysis showed that the discrepancies do not arise from possible neutron flux discrepancies but are most likely due to inadequate representation of anisotropic neutron scattering in the calculations.