ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Schulz Electric™ Refurbishes Critical Circulating Water Pump Motor in Only Four Days
Schulz Electric™ was contacted by a nuclear power plant in the New England region that serves a community of over 2 million homes. After five years of service, a 1500 HP, 4 kV, 24-pole circulating water pump motor (measuring approximately 7’ wide, 8’ tall, and weighing several tons) needed refurbishing while the plant was still online. To add to their concern, the power plant is located close to the ocean. The aging motor was not only approaching the end of its serviceable life, but was highly susceptible to moisture intrusion and the salt-laden air, which can build up in air passages within the motor. These environmental conditions can lead to elevated operating temperatures and corrosion developing on the rotor, stator, and shaft components. These factors combined, placed the plant at an increased risk of downtime that could have potentially led to a significant loss of revenue if they were forced into a shutdown event.
Roland A. Jalbert, Charles E. Murphy
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 1182-1186
Tritium Release Experiment | doi.org/10.13182/FST88-A25299
Articles are hosted by Taylor and Francis Online.
In June 1987, an experiment was performed at the Chalk River Nuclear Laboratories in Ontario, Canada, to study the oxidation of HT in the environment. The experiment involved a 30-minute release of 3.54 TBq (95.7 Ci) of HT to the atmosphere at an elevation of one meter. The HTO/HT ratios were shown to slowly increase downwind (∼ 4 × 10−5 at 50 meters to almost 10−3 at 400 meters) as conversion of HT takes place. For several days after the release, HTO concentrations in the atmosphere remained elevated. Freeze-dried water from vegetation samples was found to be very low in HTO immediately after the release suggesting a very low direct uptake of HTO in air by vegetation. The free-HTO concentration in vegetation increased during the first day, peaking during the second day (about 1.5 − 3.0 × 104 Bq/L at 50 meters from the source) and decreasing by the end of the second day. The organically bound tritium continued to accummulate during the period following exposure (about 400 Bq/kg dry weight at 50 meters after two days).