ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Robert J. Kurzeja, Charles E. Murphy Jr., Robert W. Taylor
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 1111-1114
Tritium Safety | doi.org/10.13182/FST88-A25287
Articles are hosted by Taylor and Francis Online.
An unplanned release of 168,000 Ci of elemental tritium (HT) and 4700 Ci of tritium oxide (HTO) occurred on July 31, 1987 from the Savannah River Plant. The oxide fraction in the exhaust stack was determined to be 2.7%. The air concentrations of HT and HTO were also measured at 43 downwind locations. The oxide fraction varied between 2 and 3% at the plant boundary (12 miles downwind) and between 0.3% and 84% at greater downwind distances (15 to 40 miles). The increased variability of the oxide fraction with downwind distance is attributed to exchange of oxide with surface vegetation and to turbulent transfer between the surface and the boundary layer. These results are relevant to a recent study of HT oxidation based on downwind changes in the HT/HTO ratio (Bardolle, 1981).