ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 under 40: The wait is over
Following the enthusiastic response from the nuclear community in 2024 for the inaugural NN 40 under 40, the Nuclear News team knew we had to take up the difficult task in 2025 of turning it into a recurring annual issue—though there was plenty of uncertainty as to how the community would receive a second iteration this year. That uncertainty was unfounded, clearly, as the tight-knit nuclear community embraced the chance to celebrate the up-and-coming generation of scientists, engineers, and policy makers who are working to grow the influence of this oft misunderstood technology.
J.R. Stencel, J.D. Gilbert, O.A. Griesbach, J.M. Greco
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 1047-1053
Measurement of Tritium | doi.org/10.13182/FST88-A25276
Articles are hosted by Taylor and Francis Online.
Measurements within the Tokamak Fusion Test Reactor (TFTR) vacuum vessel atmosphere in 1985 indicated low levels of tritium oxide (HTO). From January to July 1987 approximately 3 × 1018 D-D fusion neutrons were produced in TFTR operations. These reactions would be expected to produce a triton for each reaction or 5.4 GBq (145 milliCuries) of tritium. An HTO measurement made of the vessel on 7/10/87, five days after the last pulsing of the machine, but before the machine was let up to air, indicated an HTO level of 1 MBq m−3 (28 µCi m−3) or approximately six times the DOE concentration guide value of 185 kBq m−3 (5 µCi m−3). The ICRP 30 Derived Air Concentration (DAC) limit of 800 kBq m−3 (22 µCi m−3) will become the limit when Draft DOE Order 5480.11 is implemented. A venting program for the vessel was set up with the objective of limiting the internal dose equivalent to personnel working inside the vacuum vessel. An HTO/HT measurement indicated a 57:1 ratio. HTO was detected in Neutral Beam Injectors (NBI). Tritium concentrations were also detected in a roughing pump in oil/water mixtures within the pump reservoirs. The water to oil tritium concentration ratio was 660:1. The graphite indicated an outgassing effect during the activities within the vessel. In addition, the loose powdered graphite with its tritium absorption presented the first known contamination problem for a tokamak operation. Smearable contamination levels up to 600 Bq/100 cm2 (36,000 dpm/100 cm2) were detected inside the vacuum vessel. This paper discusses the measurements, contamination problems, and results of dealing with the first operational health physics tritium-related activity in a fusion energy research tokamak.