ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
R. Lässer, G. L. Powell
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 695-700
Tritium Properties and Interactions with Material | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25215
Articles are hosted by Taylor and Francis Online.
Solubility measurements of tritium (T) in Pd1−YAgY alloys (Y = 0.00, 0.10, 0.20, 0.30) are reported in the temperature range of 250 K to 733 K, the pressure range below 3 bar, and the concentration range of 0.001 to 0.64 hydrogen to metal atom ratio. To study isotopic effects, the pressure-concentration-temperature relationships of the hydrogen isotopes protium (H) and deuterium (D) have been measured using the same samples and experimental setup and to temperatures as high as 1500 K using a different set up and samples. The experimental data are compared with values for H and D determined by other groups. In the case of T, most of the data presented have not been determined before. From these data the Sieverts' constants were calculated which show a strong temperature and isotope dependence. Analytical expressions, based on models that assume various degrees to which the hydrogen can perceive the alloy composition of individual sites in an alloy, are given for the Sieverts' constants that allow the calculation of the standard Gibbs free energies, enthalpies and entropies of H, D, and T in these alloys.