ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
R. Lässer, G. L. Powell
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 695-700
Tritium Properties and Interactions with Material | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25215
Articles are hosted by Taylor and Francis Online.
Solubility measurements of tritium (T) in Pd1−YAgY alloys (Y = 0.00, 0.10, 0.20, 0.30) are reported in the temperature range of 250 K to 733 K, the pressure range below 3 bar, and the concentration range of 0.001 to 0.64 hydrogen to metal atom ratio. To study isotopic effects, the pressure-concentration-temperature relationships of the hydrogen isotopes protium (H) and deuterium (D) have been measured using the same samples and experimental setup and to temperatures as high as 1500 K using a different set up and samples. The experimental data are compared with values for H and D determined by other groups. In the case of T, most of the data presented have not been determined before. From these data the Sieverts' constants were calculated which show a strong temperature and isotope dependence. Analytical expressions, based on models that assume various degrees to which the hydrogen can perceive the alloy composition of individual sites in an alloy, are given for the Sieverts' constants that allow the calculation of the standard Gibbs free energies, enthalpies and entropies of H, D, and T in these alloys.