ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Innovation for advanced fuels at SRNL
As the only Department of Energy Office of Environmental Management–sponsored national lab, Savannah River National Laboratory has a history deeply rooted in environmental stewardship efforts such as nuclear material processing and disposition technologies. SRNL’s demonstrated expertise is now being leveraged to solve nuclear fuel supply -chain obstacles by providing a source of high-assay low-enriched uranium fuel for advanced reactors.
A.E. Everatt, A.H. Dombra, R.E. Johnson
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 624-628
Tritium Processing | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25204
Articles are hosted by Taylor and Francis Online.
Air detritiation dryers at fusion facilities require high detritiation factors to minimize environmental releases. To increase the detritiation factor in air dryers, we have investigated a technique of eluting the residual adsorbed tritiated water on a molecular sieve bed that uses H2O steam washing during regeneration. The method relies on additional detritiation of the air stream occurring through isotopic exchange between the tritiated water vapor passing through a dryer bed with previously adsorbed non-tritiated water. Isotopic exchange is studied in both an operating industrial-scale air dryer, where the bed has been pretreated to remove tritium, and in a small laboratory bed. A mathematical model is presented to quantify the isotopic exchange process.