ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
A. Rahier, R. Cornelissen, A. Bruggeman, P. De Regge
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 602-607
Tritium Processing | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25200
Articles are hosted by Taylor and Francis Online.
In the framework of the European fusion technology programme, SCK/CEN (Mol, Belgium) has continued the development of an electrolysis cell for highly tritiated water. In the resulting original concept, the liquid inventory is limited to the vertical porous gas separator which is wetted by capillarity. Use is made of thermoelectric heat pumps to cool the cell down to about 8 °C. Intensive testing with light water has been performed successfully during more than 10,000 cumulated hours with mock-up cells, and during more than 6,000 cumulated hours with a prototype cell. These tests have demonstrated the robustness and the long-term reliability of the proposed system. Further experiments are going on with the aim to characterize the working of the capillary cell. In the same time, peripheral equipment such as demisters and cold traps are being tested. These devices are to be incorporated in a dedicated loop for testing with tritiated water at the nominal specific activity (∼ 4.1019 Bq/m3).