ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
CFS working with NVIDIA, Siemens on SPARC digital twin
Commonwealth Fusion Systems, a fusion firm headquartered in Devens, Mass., is collaborating with California-based computing infrastructure company NVIDIA and Germany-based technology conglomerate Siemens to develop a digital twin of its SPARC fusion machine. The cooperative work among the companies will focus on applying artificial intelligence and data- and project-management tools as the SPARC digital twin is developed.
C. H. Cheh
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 567-573
Tritium Processing | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25194
Articles are hosted by Taylor and Francis Online.
A large scale demonstration system was designed for a throughput of 3 mol/day equimolar mixture of H, D, and T. The demonstration system was assembled and an experimental program carried out. This project was funded by Kernforschungszentrum Karlsruhe, Canadian Fusion Fuel Technology Projects and Ontario Hydro Research Division. Several major design innovations were successfully implemented in the demonstration system and are discussed in detail. Many experiments were carried out in the demonstration system to study the performance of the system to separate hydrogen isotopes at high throughput. Various temperature programming schemes were tested, heart-cutting operation was evaluated, and very large (up to 138 NL/injection) samples were separated in the system. The results of the experiments showed that the specially designed column performed well as a chromatographic column and good separation could be achieved even when a 138 NL sample was injected. The system may also have many other applications such as fusion fuel or tritiated waste clean-up and separation of air contaminated hydrogen isotope samples.