ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
K. Ashibea, H. Yoshida, Y. Naruse, C. R. Walthers, J. L. Anderson
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 546-551
Tritium Processing | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25190
Articles are hosted by Taylor and Francis Online.
A Monte Carlo computer code for analyzing free molecular gas flow has been developed to study the pumping characteristics of compound cryopumps for plasma chamber evacuation of fusion reactors. The code can deal with complex internal geometries of the pumps which commonly consist of cryopumping surfaces surrounded with elements like baffles, shields, and reservoirs. This code was used to study the pumping performance of a compound cryopump in the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The results show that the calculated pumping speeds are strongly affected by the geometrical models employed in the calculations, and that an analysis based on a detailed model is essential to estimate the performance of compound cryopumps. The TSTA pumps were recently updated and are expected to be tested and operated with actual mixtures of deuterium, tritium, and helium. Then the code will be used to interpret the measured pumping speeds.aPermanent address: R&D Center, Toshiba Corporation, 4–1, Ukishima-cho, Kawasaki-ku, Kawasaki, 210, Japan, (044) 277–3111.