ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Schulz Electric™ Refurbishes Critical Circulating Water Pump Motor in Only Four Days
Schulz Electric™ was contacted by a nuclear power plant in the New England region that serves a community of over 2 million homes. After five years of service, a 1500 HP, 4 kV, 24-pole circulating water pump motor (measuring approximately 7’ wide, 8’ tall, and weighing several tons) needed refurbishing while the plant was still online. To add to their concern, the power plant is located close to the ocean. The aging motor was not only approaching the end of its serviceable life, but was highly susceptible to moisture intrusion and the salt-laden air, which can build up in air passages within the motor. These environmental conditions can lead to elevated operating temperatures and corrosion developing on the rotor, stator, and shaft components. These factors combined, placed the plant at an increased risk of downtime that could have potentially led to a significant loss of revenue if they were forced into a shutdown event.
K. Ashibea, H. Yoshida, Y. Naruse, C. R. Walthers, J. L. Anderson
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 546-551
Tritium Processing | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25190
Articles are hosted by Taylor and Francis Online.
A Monte Carlo computer code for analyzing free molecular gas flow has been developed to study the pumping characteristics of compound cryopumps for plasma chamber evacuation of fusion reactors. The code can deal with complex internal geometries of the pumps which commonly consist of cryopumping surfaces surrounded with elements like baffles, shields, and reservoirs. This code was used to study the pumping performance of a compound cryopump in the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The results show that the calculated pumping speeds are strongly affected by the geometrical models employed in the calculations, and that an analysis based on a detailed model is essential to estimate the performance of compound cryopumps. The TSTA pumps were recently updated and are expected to be tested and operated with actual mixtures of deuterium, tritium, and helium. Then the code will be used to interpret the measured pumping speeds.aPermanent address: R&D Center, Toshiba Corporation, 4–1, Ukishima-cho, Kawasaki-ku, Kawasaki, 210, Japan, (044) 277–3111.