ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Yujiro Ikeda, Mahmoud Z. Youssef
Fusion Science and Technology | Volume 13 | Number 4 | May 1988 | Pages 616-643
Technical Paper | Tritium System | doi.org/10.13182/FST88-A25138
Articles are hosted by Taylor and Francis Online.
Several integral experiments on tritium breeding were jointly performed at the Fusion Neutronics Source (FNS) facility at the Japan Atomic Energy Research Institute (JAERI), in connection with the U.S./JAERI Collaborative Program on Fusion Breeder Neutronics. Tritium production rates from 6Li (T6) and 7Li (T7) were measured at several locations in an Li2O assembly (D = 60 cm, L = 60 cm) embedded in the concrete wall of a 5- × 5- × 4.5-m room (reference experiment). JAERI has also performed independent benchmark experiments with the Li2O assembly located in a large room of negligible room-return neutrons. In the reference experiment, large discrepancies in T6 were found at the front locations in the Li2O assembly. At middle locations, the calculated-to-experimental (C/E) values for T6 are ∼1.2 (U.S.) and ∼1.1 (JAERI). The C/E values for T7 are ∼1.18 (U.S.) and 1.05 (JAERI). To assess the contribution to the uncertainty in predicting T6 and T7 that results from the current uncertainties in the nuclear data base, an extensive two-dimensional cross-section sensitivity/uncertainty analysis was performed. For that purpose, the FORSS module, and the VIP and DOT 4.3 codes were used along with the PUFF-2 covariance code. Two systems were considered for the analysis: the benchmark system and the reference system. The models used simulate the geometrical details and source conditions for the experiments. After coupling the sensitivity profiles with the cross-section uncertainty information (ENDF/B-V, file 33), it was found that the standard deviations in T6 are 2.0 to 3.5%. In the reference system, the uncertainties in T6 at front locations due to data uncertainties were found to be very small (∼0.3%). The large discrepancies at these locations between the calculation and measurements were attributed to inaccuracy in modeling and predicting the room-return component of incident neutrons. The uncertainties in T7 due to the uncertainties in nuclear data were found to be 3 to 6%, with the largest values at back locations. The discrepancies with experimental values were attributed to the inaccuracy in the 7Li(n,n′α)t cross section, which requires further evaluation.