ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Anil Kumar, Cherif Sahraoui
Fusion Science and Technology | Volume 13 | Number 3 | March 1988 | Pages 484-494
Technical Paper | Alpha-Particle Workshop / Blanket Engineering | doi.org/10.13182/FST88-A25126
Articles are hosted by Taylor and Francis Online.
Reaction rates of 115In(n, n′) and 90Zr(n,2n) were measured on various axial positions inside single slabs of 18-cm-thick beryllium and 15-cm-thick lead kept in front of a Haefely deuterium-tritium neutron generator. These experimental axial activity profiles, and those for the zirconium/indium ratio, are compared to those computed using the two-dimensional discrete ordinates code DOT 3.5 coupled to a compatible first-collision source evaluator code GREATUNCL. Generally, a satisfactory agreement is seen between these profiles for both beryllium and lead slabs.