ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
D. L. Jassby
Fusion Science and Technology | Volume 13 | Number 3 | March 1988 | Pages 463-472
Technical Paper | Alpha-Particle Workshop / Nonelectrical Application | doi.org/10.13182/FST88-A25124
Articles are hosted by Taylor and Francis Online.
Helium-3 placed in an annular cell or array of cells around a tokamak fusion generator can convert moderated fusion neutrons to energetic ions by the 3He(n, p)T reaction and thereby excite gaseous lasants mixed with the 3He while simultaneously breeding tritium. The required 3He inventory is ∼ 5 kg for large tokamak devices. Special configurations of toroidal field magnets, neutron moderators, and reflectors must be incorporated to maximize the neutron flux in the laser cell. The annular laser radiation can be coupled to an unstable resonator at the top of the tokamak and extracted as a single output beam.