ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Roger O. Bangerter
Fusion Science and Technology | Volume 13 | Number 2 | February 1988 | Pages 348-355
Technical Paper | Heavy-Ion Fusion | doi.org/10.13182/FST88-A25109
Articles are hosted by Taylor and Francis Online.
The cost of an accelerator depends strongly on the requirements that it must satisfy to drive a target. Therefore, an important part of the Heavy-Ion Fusion Systems Assessment (HIFSA) Project has been a search for, and an assessment of, target concepts that might relax the accelerator requirements. This paper outlines the considerations that have guided the search for improved targets and gives a brief description of the various concepts that have been studied. Not all of the target concepts were sufficiently developed for inclusion in the HIFSA study and are discussed here for completeness. Recent work has led to new estimates of the gain of radiatively driven targets. This work was not completed in time for the HIFSA study, but is included in this paper. Although the new results differ substantially from the base case used in the study, a systems study performed at Lawrence Livermore National Laboratory shows that the new results increase the cost of electricity by slightly less than 10%.