ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Douglas C. Wilson, Donald J. Dudziak, Glenn R. Magelssen, David S. Zuckerman, Daniel E. Driemeyer
Fusion Science and Technology | Volume 13 | Number 2 | February 1988 | Pages 333-338
Technical Paper | Heavy-Ion Fusion | doi.org/10.13182/FST88-A25107
Articles are hosted by Taylor and Francis Online.
The systems model for a commercial electric power facility produced by the Heavy-Ion Fusion System Assessment is used to study the sensitivity of electricity cost to various inertial confinement fusion target characteristics including gain, peak power, ion range, and target fabrication cost. Net electric power from the plant was fixed at 1000 MW(electric) to eliminate large effects caused by economies of scale. An improved target cost model is used and compared with earlier results. Although specific quantitative results changed, the earlier general conclusions remain valid. The system is moderately insensitive to target gain. A factor of 2.5 change in gain causes <10% change in electricity cost. Increased peak power needed to drive targets poses only a small cost risk but requires many more beamlets be transported to the target. Shortening the required ion range causes both cost and beamlet difficulties. A factor of 4 decrease in the required range at a fixed driver energy increases electricity cost by 43% and raises the number of beamlets from 34 to 330. Finally, the heavy-ion fusion system can accommodate large increases in target costs. While moderate target gain is required, to address the other major uncertainties target design should concentrate on understanding requirements for ion range and peak driver power.