ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Douglas C. Wilson, Donald J. Dudziak, Glenn R. Magelssen, David S. Zuckerman, Daniel E. Driemeyer
Fusion Science and Technology | Volume 13 | Number 2 | February 1988 | Pages 333-338
Technical Paper | Heavy-Ion Fusion | doi.org/10.13182/FST88-A25107
Articles are hosted by Taylor and Francis Online.
The systems model for a commercial electric power facility produced by the Heavy-Ion Fusion System Assessment is used to study the sensitivity of electricity cost to various inertial confinement fusion target characteristics including gain, peak power, ion range, and target fabrication cost. Net electric power from the plant was fixed at 1000 MW(electric) to eliminate large effects caused by economies of scale. An improved target cost model is used and compared with earlier results. Although specific quantitative results changed, the earlier general conclusions remain valid. The system is moderately insensitive to target gain. A factor of 2.5 change in gain causes <10% change in electricity cost. Increased peak power needed to drive targets poses only a small cost risk but requires many more beamlets be transported to the target. Shortening the required ion range causes both cost and beamlet difficulties. A factor of 4 decrease in the required range at a fixed driver energy increases electricity cost by 43% and raises the number of beamlets from 34 to 330. Finally, the heavy-ion fusion system can accommodate large increases in target costs. While moderate target gain is required, to address the other major uncertainties target design should concentrate on understanding requirements for ion range and peak driver power.