ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Ulrich Fischer
Fusion Science and Technology | Volume 13 | Number 1 | January 1988 | Pages 143-152
Technical Paper | Blanket Engineering | doi.org/10.13182/FST88-A25091
Articles are hosted by Taylor and Francis Online.
The use of beryllium as a neutron multiplier for fusion reactor blankets has been analyzed. The analysis has been performed based on designs for a helium-cooled ceramic breeder and a self-cooled liquid-metal blanket, which have both been suggested for the Next European Torus reactor. It is shown that the use of beryllium in a ceramic breeder blanket is best in a “sandwich-type” arrangement, where a beryllium block is embedded between a thin ceramic layer and the thick main breeding zone, or in a homogeneous mixture of beryllium and breeding ceramics. The sandwich-type solution needs only a minimum of beryllium inventory. Monte Carlo calculations show that heterogeneity effects in such a blanket are negligible. Therefore, the “homogeneous” solution can be achieved in a more heterogeneous arrangement like slabs of beryllium with the breeding ceramics in between. The use of beryllium also provides a benefit for liquid-metal blankets, using either LiPb or lithium metal as breeding material, since neutron multiplication and the tritium breeding ratio are enhanced in such a way that it is possible to reduce the blanket thickness considerably or to replace the inboard breeding blanket by a simple neutron reflector. It turns out that in such a blanket the use of lithium metal as breeding material is superior to that of LiPb.