ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Martha H. Redi, Stewart J. Zweben, Glenn Bateman
Fusion Science and Technology | Volume 13 | Number 1 | January 1988 | Pages 57-86
Technical Paper | Plasma Engineering | doi.org/10.13182/FST88-A25085
Articles are hosted by Taylor and Francis Online.
The possibility of obtaining ignition in the Tokamak Fusion Test Reactor (TFTR) by means of very centrally peaked density profiles is examined. It is shown that local central alpha heating can be made to exceed local central energy losses (“central ignition”) under global conditions for which Q 1. Time-dependent one-dimensional transport simulations with a simplified transport model show that the normal global ignition requirements are substantially relaxed for plasmas with peaked density profiles. More realistic simulations with recently developed profile-consistent microinstability based models for electron and ion confinement show that TFTR may form a small centrally ignited region if peaked central density can be maintained.