ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Russia withdraws from 25-year-old weapons-grade plutonium agreement
Russia’s lower house of Parliament, the State Duma, approved a measure to withdraw from a 25-year-old agreement with the United States to cut back on the leftover plutonium from Cold War–era nuclear weapons.
Martha H. Redi, Stewart J. Zweben, Glenn Bateman
Fusion Science and Technology | Volume 13 | Number 1 | January 1988 | Pages 57-86
Technical Paper | Plasma Engineering | doi.org/10.13182/FST88-A25085
Articles are hosted by Taylor and Francis Online.
The possibility of obtaining ignition in the Tokamak Fusion Test Reactor (TFTR) by means of very centrally peaked density profiles is examined. It is shown that local central alpha heating can be made to exceed local central energy losses (“central ignition”) under global conditions for which Q 1. Time-dependent one-dimensional transport simulations with a simplified transport model show that the normal global ignition requirements are substantially relaxed for plasmas with peaked density profiles. More realistic simulations with recently developed profile-consistent microinstability based models for electron and ion confinement show that TFTR may form a small centrally ignited region if peaked central density can be maintained.