ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Martha H. Redi, Stewart J. Zweben, Glenn Bateman
Fusion Science and Technology | Volume 13 | Number 1 | January 1988 | Pages 57-86
Technical Paper | Plasma Engineering | doi.org/10.13182/FST88-A25085
Articles are hosted by Taylor and Francis Online.
The possibility of obtaining ignition in the Tokamak Fusion Test Reactor (TFTR) by means of very centrally peaked density profiles is examined. It is shown that local central alpha heating can be made to exceed local central energy losses (“central ignition”) under global conditions for which Q 1. Time-dependent one-dimensional transport simulations with a simplified transport model show that the normal global ignition requirements are substantially relaxed for plasmas with peaked density profiles. More realistic simulations with recently developed profile-consistent microinstability based models for electron and ion confinement show that TFTR may form a small centrally ignited region if peaked central density can be maintained.