ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Robert J. Demyanovich, Scott Lynn
Fusion Science and Technology | Volume 12 | Number 3 | November 1987 | Pages 488-501
Technical Paper | Inertial Confinement Fusion | doi.org/10.13182/FST87-A25080
Articles are hosted by Taylor and Francis Online.
Process designs were evaluated for the continuous, large-scale generation of singlet delta oxygen for use in a chemical oxygen-iodine laser. The excited singlet oxygen is generated from the chemical reaction of chlorine gas with basic hydrogen peroxide. The chemical reaction also produces a large waste brine stream that can be controlled by recycling through a chlor-alkali cell, which regenerates the reactants Cl2 and NaOH. To prevent deactivation of this excited oxygen, a large excess of hydrogen peroxide is typically used to change the reaction mechanism. This use of excess hydrogen peroxide or nonstoichiometric generation leads to substantial increases in capital and operating costs when compared with theoretical stoichiometric (no excess) generation. For the generation of singlet oxygen at a 500-kW level of equivalent lasing power, a theoretical stoichiometric plant producing all reactants has an estimated capital cost of $38 million. The capital cost for a nonstoichiometric plant is $98 million. Operating costs are $0.68 and $2.12/lb of singlet oxygen, respectively. The energy efficiency of generation is ∼6.3% for the theoretical stoichiometric flow sheet and 3.3% for the nonstoichiometric flow sheet. At this nonstoichiometric efficiency, the use of a chemical oxygen iodine laser for photoneutralization of negative ion beams is probably not competitive with other technologies below a 750-keV neutral beam level.