ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Robert J. Demyanovich, Scott Lynn
Fusion Science and Technology | Volume 12 | Number 3 | November 1987 | Pages 488-501
Technical Paper | Inertial Confinement Fusion | doi.org/10.13182/FST87-A25080
Articles are hosted by Taylor and Francis Online.
Process designs were evaluated for the continuous, large-scale generation of singlet delta oxygen for use in a chemical oxygen-iodine laser. The excited singlet oxygen is generated from the chemical reaction of chlorine gas with basic hydrogen peroxide. The chemical reaction also produces a large waste brine stream that can be controlled by recycling through a chlor-alkali cell, which regenerates the reactants Cl2 and NaOH. To prevent deactivation of this excited oxygen, a large excess of hydrogen peroxide is typically used to change the reaction mechanism. This use of excess hydrogen peroxide or nonstoichiometric generation leads to substantial increases in capital and operating costs when compared with theoretical stoichiometric (no excess) generation. For the generation of singlet oxygen at a 500-kW level of equivalent lasing power, a theoretical stoichiometric plant producing all reactants has an estimated capital cost of $38 million. The capital cost for a nonstoichiometric plant is $98 million. Operating costs are $0.68 and $2.12/lb of singlet oxygen, respectively. The energy efficiency of generation is ∼6.3% for the theoretical stoichiometric flow sheet and 3.3% for the nonstoichiometric flow sheet. At this nonstoichiometric efficiency, the use of a chemical oxygen iodine laser for photoneutralization of negative ion beams is probably not competitive with other technologies below a 750-keV neutral beam level.